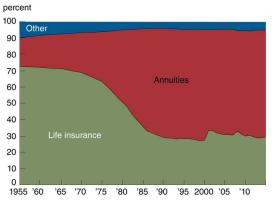
Liquidity Risk in Insurance and Macroprudential Regulation

Anastasia Kartasheva

Swiss Institute of International Economics (SIAW), University of St.Gallen (HSG), and Swiss Finance Institute (SFI)

SAA Annual General Meeting, September 6, 2024

Background


- ► Focus today: Financial guarantees embedded in variable annuities contracts in the US
 - Insurers as Asset Managers and Systemic Risk, Andrew Ellul, Chotibhak Jotikasthira, Anastasia Kartasheva, Christian T Lundblad, Wolf Wagner, The Review of Financial Studies, Volume 35, Issue 12, December 2022, Pages 5483–5534, https://doi.org/10.1093/rfs/hhac056
- ► Explicit or implicit financial guarantees exists in other settings in the insurance industry
 - The UK pension crisis in 2022: Margin calls on interest rate swaps due to rates surge prompt forced fire sales (Jensen et al., 2024)
 - Covid 19 crisis and Collateral Loan Obligations (CLO) investment of the US life insurers:
 CLO became information sensitive during the crisis which led to mass redemptions and distress of MMMFs (Foley-Fischer et al., 2024)

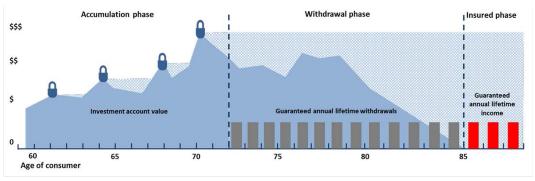
Research Motivation I

- Systemic risk can arise from interconnectedness of institutions
 - Lots of evidence of the impact from interconnectedness on the liability/funding side (mostly from banking literature)
 - Scarce evidence on impacts of interconnectedness arising from the asset side
 - Acharya and Yorulmazer (2007, 2008): "Too many to fail" guarantees leading to herding
 - Greenwood et al. (2015): Fire sales spreading contagion across banks holding the same assets
- ► This paper: Proposes a new mechanism through which financial institutions' off-balance sheet commitments induce
 - Reaching for yield (RFY)
 - Asset interconnectedness leading to potential systemic risk
- ► New mechanism: shared business model

Research Motivation II

Our laboratory: U.S. life insurers writing Variable Annuities (VAs) = similar to asset managers

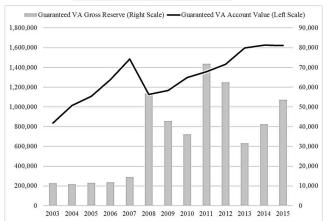
Sources: American Council of Life Insurers, 2015 Life Insurers Fact Book, and authors' calculations.


- ► VAs embed guarantees, exposing insurers to common, undiversifiable shocks
- ► Guarantees are common for a host of financial institutions, e.g. Defined Benefit pension plans, banks' securitization arrangements

Variable Annuities

- ► A Variable Annuity is a long-term retirement saving contract between an insurer and a policyholder
 - The fund is invested in stocks (> 70%), bonds, and money markets
- An insurer allocates policyholder savings to a separate account and acts as a delegated asset manager of policyholder's funds
- ► To compete with other savings alternatives, insurers offer a host of guarantees
 - An assurance that the policyholder's savings and annuity payments are protected from adverse market conditions, e.g., Guaranteed minimum income benefit

Variable Annuities


A Variable Annuity with a guarantee is a (complicated) put option where the strike price is not set once but several times

Variable Annuity Payout Pattern with Guaranteed Lifetime Withdraw Benefit (GLWB). Source: Government Accountability Office (GAO) Reports: Retirement Security, December 2012.

Guarantees and Insurer's Capital

- Guarantees = Put options. Insurers are required to hold:
 - Statutory reserve to ensure promised payments
 - Plus, additional Risk-Based Capital (RBC) to absorb extreme losses
- ▶ Both reserves and RBC spike during stress periods

Our Thesis: Guarantee → Systemic Risk?

- ➤ Traditional life policies expose insurers to "diversifiable" risk, while VAs expose them to "systematic" risk
 - Factors that influence VA-related reserves: stock prices and interest rates
- ► To mitigate risk, insurers hedge their market exposures
- Impact from guarantee writing on illiquid bond holdings:
 - Profits from guarantees alleviate the regulatory constraint... more RFY
 - Guarantees come with relatively higher capital requirements... less RFY
- ► First effect likely to dominate when hedging effectiveness (operating through lower capital requirements) is considered
- ► Insurers become interconnected on the asset side, and in case of shocks, they will engage in fire sales of illiquid bonds to re-gain financial health

Framework of Analysis

- ▶ Step I: Model to analyze the mechanism through which VAs with guarantees:
 - Engender correlated investment decisions across life insurers during non-stress periods
 - Propagate correlated liquidation during stress periods to meet the funding requirements on reserves
- ► Step II: Calibrate the model to U.S. life insurance data and obtain estimates of correlated investments in:
 - Liquid bonds
 - Illiquid bonds
 - Equity and price impacts due to liquidation during distress periods (fire sales and contagion)

Model: Major Challenges

- ► Guarantee writing is an endogenous choice
 - "Abolishing guarantees" may result in an insurer taking on risk along other dimensions
 - Same applies to the hedging choice
- Guarantee-writing likely to be correlated with other insurer characteristics (i.e., "sophistication")
 - Need to disentangle these effects
- Unwinding the guarantees has systemic fire-sale effects ("general equilibrium" effects)

Model: Key Elements

- An insurer with total assets A = equity E + liabilities D
- Chooses portfolio allocation to maximize expected return
- Insurer decides upon share \tilde{g} of VAs with guarantees
 - Traditional (life insurance) business generates constant unit profit
 - Guarantee writing exhibits declining returns
- Three assets: Liquid bond (L), Illiquid bond (I), and Stock (S) with returns $r_S > r_I > 0 = r_L$
- Insurer prefers a stock-bond allocation of $\bar{\alpha}_S(\eta)$ depending on level of sophistication η

Model: Hedging

- ▶ Insurer hedges a fraction $h \in [0,1]$ of the guarantees using dynamic hedging
 - Shorting the stock market and going long bonds
 - An amount of $h|\delta|\tilde{g}\frac{D}{A}$ in the stock market, where δ denotes the "generosity" of the guarantee, and long on bonds
- ► Hedging exhibits declining returns and is encouraged by the regulatory capital relief
 - Hedging effectiveness decreases in η
 - Benefit: Lower regulatory capital requirements, but relief is capped by regulators at κ
 - Cost: Lower portfolio returns

Insurers' Optimization

- ► Insurer maximizes profits from underwriting premiums (life + VAs) and returns from assets held
- ▶ Insurer chooses guarantees \tilde{g} , hedging h, and portfolio weights α_{S} , α_{I} , α_{L}
- Insurer faces regulatory capital constraint with risk weights γ_i

$$\frac{E}{\left(\bar{\alpha}_{s}\gamma_{S} + \alpha_{I}\gamma_{I} + \left(1 - h\left(1 - \frac{\eta h}{2}\right)\kappa\right)\tilde{g}\frac{D}{A}\gamma_{G} + \left(1 - \tilde{g}\right)\frac{D}{A}\gamma_{T}\right)A} \geq \rho$$

VAs and Reaching for Yield

- ► Profits from guarantees alleviate the regulatory constraint and allow insurers to hold more illiquid bonds
- ► Guarantees come with relatively higher capital requirements, compared to traditional life insurance

$$\left(e_{G} - \frac{f}{2}\widetilde{g}^{*} - e_{T}\right) > \rho\left[\left(1 - \widetilde{h}^{*}\right)\gamma_{G} - \gamma_{T}\right]$$

- ► The effect can, in principle, go either way, but ...
- ... the net effect depends on the extent to which hedging is effective

Main Prediction

- Case of "complete" hedging: The first effect dominates (i.e., new funds to reach for yield), and guarantee writing unambiguously leads to more holdings of illiquid bonds
- <u>Main Conclusion</u>: Writing guarantees increases holdings of illiquid bonds iff guarantees are sufficiently profitable relative to their required capital

Insurer-level Data

- NAIC data obtained through SNL Financial
- ▶ 176 Life insurers (groups and stand-alone insurers) in 2010-2015
 - Insurers with (guaranteed) VAs, 82 entities
 - Insurers without VAs with assets ≥ 5th PCT of Insurers with VAs
- ▶ VA information: account values, gross reserves, reinsurance credits
 - Delta inferred by picking put option strike that matches the gross reserve
- Schedule D for portfolio year-end positions (corporate bonds, ABSs, mortgages, etc.), and trading activities
- Schedule DB for derivative positions

Model Predictions and Calibration

More guarantee hedging = Less net stock holding

$$\alpha_{s} = \bar{\alpha}_{s} - h|\delta|\widetilde{g}\frac{D}{A}$$

 Allows "sophistication" (proportional to In(Assets)) to affect stock holding both directly and through guarantee hedging:

(1) ...
$$\alpha_S = \bar{\alpha}_{S0} + \bar{\alpha}_{S1}\eta_X \left(\frac{1}{1 + \ln(\mathsf{Assets})}\right) - \frac{1}{\eta_X} \left(\frac{(1 - h_0|\delta|)|\delta|\widetilde{g}\frac{D}{A}}{1 + \ln(\mathsf{Assets})}\right)$$

More VA (with guarantee) = More profit/capital for RFY

(2) ...
$$\frac{\text{Underwriting Profit}}{\text{Total Reserve}} = e_T \cdot \frac{D}{A} + (e_G - e_T) \cdot \widetilde{g} \frac{D}{A} - \frac{f}{2} \cdot \widetilde{g}^2 \frac{D}{A}$$

But marginal profit declines as VA increases

Overview of Empirical Analysis

- ► Portfolio allocation: The higher the amount of guarantee and hedging, the higher the amount of capital available for RFY
 - Different types of illiquid bonds for RFY:
 - Junk Bonds, Private label ABS classified as Class 1 (higher than BBB), Class 2 (BBB), and Class 3 (lower than BBB), Mortgage loans, Other bond-like assets (private equity, etc.)

- ► Fire sales induced by herding: Following a shock, insurers need to liquidate assets to fulfill the capital requirement
 - Shock to stock market, shock to illiquid bonds, shock to guarantee value, and categorical shocks
 - Adverse (10th percentile) and severely adverse (worst) scenarios.

Preliminary Evidence - I

- ► Higher VA exposures = Less liquid bond allocation
- ▶ Relationship is monotonic (difference between [1] and [4] is over 13%) but partially offset by synthetic cash from hedging the VAs

	Mean				Difference			
Category	[1] High	[2] Medium	[3] Low	[4] No Guarantee	[1] - [2]	[1] - [3]	[1] - [4]	
Gross reserve to capital (%)	41.795	2.933	0.044	0.000	38.862***	41.751***	41.795***	
Liquid bonds	0.648	0.644	0.676	0.742	0.003	-0.029	-0.094***	
Excluding synthetic cash from hedge	0.604	0.631	0.675	0.741	-0.026***	-0.070***	-0.137***	
Cash	0.030	0.027	0.019	0.046	0.003	0.011***	-0.016*	
Synthetic cash	0.043	0.014	0.002	0.000	0.029***	0.042***	0.043***	
Bonds in NAIC 1	0.293	0.261	0.304	0.348	0.032	-0.010	-0.055*	
Bonds in NAIC 2	0.228	0.264	0.289	0.249	-0.037	-0.022	-0.021	
Agency ABS in NAIC 1	0.053	0.078	0.103	0.098	-0.025*	-0.049***	-0.045***	
Agency ABS in NAIC 2	0.000	0.000	0.000	0.000	0.000	0.000	0.000*	

Preliminary Evidence - II

► Insurers with high VA exposures have a significantly higher allocation to illiquid bonds than do insurers with lower (by 3-6%) or no VA exposures (by almost 15%)

	Mean					Difference			
Category	[1] High	[2] Medium	[3] Low	[4] No Guarantee	[1] - [2]	[1] - [3]	[1] - [4]		
Illiquid bonds	(0.339)	0.308	0.278	0.192	0.030*	0.060**	0.146***		
Long-term assets	0.029	0.028	0.023	0.014	0.001	0.006	0.015***		
Bonds in NAIC 3-6	0.030	0.035	0.031	0.030	-0.005	-0.001	-0.001		
Agency ABS in NAIC 3-6	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Private-label ABS in NAIC 1	0.098	0.095	0.096	0.072	0.003	0.002	0.026*		
Private-label ABS in NAIC 2	0.010	0.011	0.012	0.007	-0.001	-0.001	0.003**		
Private-label ABS in NAIC 3-6	0.011	0.008	0.006	0.005	0.003*	0.004***	0.006***		
Mortgages	0.101	0.081	0.073	0.040	0.020	0.028*	0.061***		
Loans	0.044	0.044	0.032	0.022	0.000	0.012	0.022**		
Derivatives for income generation	0.016	0.006	0.005	0.001	0.009**	0.011**	0.014**		
Common stock exposures	-0.007	0.035	0.035	0.047	-0.042***	-0.041***	-0.053***		

Model Predictions and Calibration

► More guarantee hedging = Less net stock holding

$$\alpha_{s} = \bar{\alpha}_{s} - h|\delta|\widetilde{g}\frac{D}{A}$$

 Allows "sophistication" (proportional to In(Assets)) to affect stock holding both directly and through guarantee hedging:

(1) ...
$$\alpha_S = \bar{\alpha}_{S0} + \bar{\alpha}_{S1}\eta_X \left(\frac{1}{1 + \ln(\mathsf{Assets})}\right) - \frac{1}{\eta_X} \left(\frac{(1 - h_0|\delta|)|\delta|\widetilde{g}\frac{D}{A}}{1 + \ln(\mathsf{Assets})}\right)$$

More VA (with guarantee) = More profit/capital for RFY

(2) ...
$$\frac{\text{Underwriting Profit}}{\text{Total Reserve}} = e_T \cdot \frac{D}{A} + (e_G - e_T) \cdot \tilde{g} \frac{D}{A} - \frac{f}{2} \cdot \tilde{g}^2 \frac{D}{A}$$

But marginal profit declines as VA increases

VAs Hedging and Stock Allocation

- ► Hedging 100% would further decrease the net stock allocation by 1-11% (mean = 3%) for the high VA group
- ▶ Implied hedge ratios = 42-96% (mean = 60%). (Additional puts about 5%)

Dependent Variable	Stock/Assets
1/(1 + ln(Assets))	0.336
VA hadging tarm	(0.174)
VA hedging term	(0.129)
RBC ratio	0.001
	(0.000)
Year fixed effects	YES
Observations	357
R-squared	0.044

- ▶ Implied $\bar{\alpha}_{S1} = 0.080$, which means that even without the VA, the most sophisticated insurer would still invest about 7% less in stocks than the least sophisticated
- ▶ Implied $\eta_X = 4.202$, which means η ranges from 0.302 (most sophisticated) to 1.258 (least sophisticated)

VAs and Underwriting Profits

- ▶ Without hedging, optimal VA is about 13% of total reserves
- ► Hedging permits capital relief, thus increasing the optimal level. Only some very large insurers, however, write more VAs than the implied optimal

Dependent Variable	Net Premium/Reserves
VA term	1.507
VA squared term	(0.375) (-5.011)
RBC ratio	(1.491) -0.000
Year fixed effects	(0.003) YES
Observations R-squared	325 0.043

- ▶ Implied $e_G e_T = 1.507$, which means that the first dollar of VA written increases net premium by over 170% (given the net premium per one dollar of traditional business of 21%)
- ▶ Implied f = 10.022, which implies that VA profits shrink quickly

Counterfactual Portfolios

- ▶ Portfolio allocation is driven by two factors:
 - Guarantee & hedging: Tilt the allocation towards bonds
 - RFY: Tilt the bond allocation to illiquid (riskier) bonds
- Using parameter estimates, we can create counterfactuals:
 - Hypothetical Portfolio 1: What if no VA?
 - Hypothetical Portfolio 2: What if actual VA and hedging but no RFY?

Guarantees and Systemic Risk

- ▶ With some probability, a common shock may hit
- ▶ What is the impact of a shock on fire sales, and how much is attributed to VAs?
 - Stock market shock, and shock to illiquid bonds
 - Shock to the guarantee, e.g., increase in stock market volatility
 - Categorical asset shock = all three
- A shock reduces capital by lowering asset values and increasing the guarantee liability
 - "De-risk" by selling illiquid bonds (keep stocks at target level)
 - Illiquid bonds are sold <u>at a discount that increases proportionally with the amount sold by the whole market</u>

Adverse Shocks (Bottom 10th pct)

- ► Without VAs, even <u>categorical shocks</u> would result in the fire-sale costs of just 7% of insurers' capital
- ▶ VAs would more than double the fire-sale amount, increasing the fire-sale costs to the max of 36% of capital
 - Stock exposure itself is relatively unimportant. Major factor is RFY

Fire-Sale Amount (\$ Million)									
Net Increase Decomposition									
Type of Shock	Magnitude of Shock	Actual	No VA	from VA	VA Exposure	Hedging	RFY		
Stock	19%	143,950	78,719	65,231	36,039	-18,765	47,958		
Illiquid bond	5%	424,236	197,571	226,665	-6,222	1,995	230,893		
Guarantee	30%	241,756	0	241,756	160,519	696	80,542		
Categorical (All Above)	All Above	615,153*	276,290	(338,863*)	152,749*	3,036*	183,078*		

Fire-Sale Cost (\$ Million)

		Net Increase			Deco	mposition	
Type of Shock	Magnitude of Shock	Actual	No VA	from VA	VA Exposure	Hedging	RFY
Stock	19%	3,854	1,153	2,702	1,297	-736	2,140
Illiquid bond	5%	33,476	7,260	26,215	-450	143	26,523
Guarantee	30%	10,871	0	10,871	-4,793	42	6,037
Categorical (All Above)	All Above	70,385*	14,199	(56,186*)	(20,039*	486*	35,661*

Severely Adverse Shocks (Worst)

- ▶ Without VAs, except the case where all worst shocks hit at once, the fire-sale amount is limited and the fire-sale costs are less than 10% of capital
- ▶ With VAs, even individual (e.g., illiquid bond) shock could lead to the maximum fire sales (all illiquid bonds), with the fire-sale costs of 36% of capital
 - Stock exposure itself is relatively unimportant. Major factor is RFY

Fire-Sale Amount (\$ Million)									
Net Increase Decomposition									
Type of Shock	Magnitude of Shock	Actual	No VA	from VA	VA Exposure	Hedging	RFY		
Stock	48%	363,664	198,869	164,795	91,047	-47,407	121,156		
Illiquid bond	8%	615,153*	316,113	(299,040*)	-9,956	3,191*	305,804*		
Guarantee	100%	615,153*	0	615,153*	429,039*	3,036*	183,078*		
Categorical (All Above)	All Above	615,153*	429,039*	186,114*	0*	3,036*	183,078*		

Fire-Sale Cost (\$ Million)

		ľ	Net Increa	ise	Deco	mposition	
Type of Shock	Magnitude of Shock	Actual	No VA	from VA	VA Exposure	Hedging	RFY
Stock	48%	24,599	7,356	17,243	8,277	-4,695	13,660
Illiquid bond	8%	70,385*	18,587	51,798*	(-1,152	365*	52,585*
Guarantee	100%	70,385*	0	70,385*	34,238*	486*	35,661*
Categorical (All Above)	All Above	70,385*	34,238*	36,147*	0*	486*	35,661*

Conclusions

- ► How systemic risk may arise from the inter-connectedness of the asset side of financial institutions' balance sheets?
- Propose an innovative mechanism: an incentive that arises from the financial institutions' business model
- Herding in illiquid assets emerges in equilibrium, increasing the likelihood of fire sales in the event of common shocks
- Our paper: the transformation of the life insurance industry has made these institutions less likely to behave as asset insulators
- ► More importantly, they are now more likely to contribute to systemic risk through correlated regulatory-induced fire-sales

References

- Insurers as Asset Managers and Systemic Risk, Andrew Ellul, Chotibhak Jotikasthira, Anastasia Kartasheva, Christian T Lundblad, Wolf Wagner, The Review of Financial Studies, Volume 35, Issue 12, December 2022, Pages 5483–5534, https://doi.org/10.1093/rfs/hhac056
- Are US Life Insurers the New Shadow Banks? Nathan Foley-Fisher, Nathan Heinrich, Stéphane Verani, chapter in forthcoming Research Handbook of Macroprudential Policy (edited by David Aikman and Prasanna Gai)
- Pension Liquidity Risk, Kristy Jansen, Sven Klingler, Angelo Ranaldo, Patty Duijm, Working paper.